ADVANCED NUMBER THEORY FINAL EXAMINATION

This exam is of **50 marks** and is **3 hours long**. Please **read all the questions carefully**. Please feel free to use whatever theorems you have learned in class after stating them clearly. Please sign the following statement:

I have not used any unfair or illegal means to answer any of the questions in this exam.

Name:

Signature:

1. Prove there are infinitely many primes of the form 4n + 1. (5)

2. Prove that if $p \equiv 2 \mod 3$ then the map $x \to x^3$ on \mathbb{F}_p^* is an isomorphism. (5)

3a. Let f be a non-zero modular form of weight k for $SL_2(\mathbb{Z})$. For what weights k is f' a modular form? (5)

3b. Show that if f is a modular form of weight k then

$$g(z) = \frac{1}{2\pi i} f'(z) - \frac{k}{12} E_2(z) f(z)$$

is a modular form of weight k + 2, where $E_2(z)$ is the conditionally convergent Eisenstein series of weight 2 for $SL_2(\mathbb{Z})$. Recall that

$$z^{-2}E_2(\frac{-1}{z}) = E_2(z) + \frac{12}{2\pi i z}$$

3c. What is g when f is E_4 ? Your answer should be in terms of the generators of the algebra of modular forms given by the Eisenstein series E_4 and E_6 . (5)

4. Count the number of projective solutions of the equation

$$aX + bY + cZ = 0$$

in $\mathbb{P}^2(\mathbb{F}_p)$ where a, b and c are in \mathbb{F}_p^* .

5. Count the number of points in $\mathbb{P}^2(\mathbb{F}_p)$ on the hypersurface whose affine equation is given by

$$2X^3 + Y^3 = 1$$

(10)

(5)

(5)

5a. When p = 29

5b. When p = 31 (10)

You may want to use the following facts

- $31 = (-1 + 5\omega)(-1 + 5\omega^2)$ in $\mathbb{Z}[\omega]$ where $\omega^3 = 1$.
- $J(\chi, \chi) = a + b\omega$ where $a \equiv 2 \mod 3$ and $b \equiv 0 \mod 3$, $a^2 ab + b^2 = 31$ and χ is a cubic character.
- $4^3 = 64$